3.216 \(\int \frac {1}{x (d+e x)^4 (d^2-e^2 x^2)^{7/2}} \, dx\)

Optimal. Leaf size=234 \[ -\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}+\frac {819 d-1024 e x}{819 d^{11} \sqrt {d^2-e^2 x^2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d^{11}}+\frac {273 d-512 e x}{819 d^9 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {273 d-640 e x}{1365 d^7 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}} \]

[Out]

8/13*d*(-e*x+d)/(-e^2*x^2+d^2)^(13/2)-4/13*e*x/d/(-e^2*x^2+d^2)^(11/2)+1/117*(-40*e*x+13*d)/d^3/(-e^2*x^2+d^2)
^(9/2)+1/819*(-320*e*x+117*d)/d^5/(-e^2*x^2+d^2)^(7/2)+1/1365*(-640*e*x+273*d)/d^7/(-e^2*x^2+d^2)^(5/2)+1/819*
(-512*e*x+273*d)/d^9/(-e^2*x^2+d^2)^(3/2)-arctanh((-e^2*x^2+d^2)^(1/2)/d)/d^11+1/819*(-1024*e*x+819*d)/d^11/(-
e^2*x^2+d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.38, antiderivative size = 234, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {852, 1805, 823, 12, 266, 63, 208} \[ -\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {819 d-1024 e x}{819 d^{11} \sqrt {d^2-e^2 x^2}}+\frac {273 d-512 e x}{819 d^9 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {273 d-640 e x}{1365 d^7 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d^{11}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(d + e*x)^4*(d^2 - e^2*x^2)^(7/2)),x]

[Out]

(8*d*(d - e*x))/(13*(d^2 - e^2*x^2)^(13/2)) - (4*e*x)/(13*d*(d^2 - e^2*x^2)^(11/2)) + (13*d - 40*e*x)/(117*d^3
*(d^2 - e^2*x^2)^(9/2)) + (117*d - 320*e*x)/(819*d^5*(d^2 - e^2*x^2)^(7/2)) + (273*d - 640*e*x)/(1365*d^7*(d^2
 - e^2*x^2)^(5/2)) + (273*d - 512*e*x)/(819*d^9*(d^2 - e^2*x^2)^(3/2)) + (819*d - 1024*e*x)/(819*d^11*Sqrt[d^2
 - e^2*x^2]) - ArcTanh[Sqrt[d^2 - e^2*x^2]/d]/d^11

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(
m + 1)*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), x] + Di
st[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^2*
(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 852

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[((f + g*x)^n*(a + c*x^2)^(m + p))/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1805

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[((a*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {1}{x (d+e x)^4 \left (d^2-e^2 x^2\right )^{7/2}} \, dx &=\int \frac {(d-e x)^4}{x \left (d^2-e^2 x^2\right )^{15/2}} \, dx\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {\int \frac {-13 d^4+44 d^3 e x+13 d^2 e^2 x^2}{x \left (d^2-e^2 x^2\right )^{13/2}} \, dx}{13 d^2}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {\int \frac {143 d^4-440 d^3 e x}{x \left (d^2-e^2 x^2\right )^{11/2}} \, dx}{143 d^4}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {\int \frac {1287 d^6 e^2-3520 d^5 e^3 x}{x \left (d^2-e^2 x^2\right )^{9/2}} \, dx}{1287 d^8 e^2}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {\int \frac {9009 d^8 e^4-21120 d^7 e^5 x}{x \left (d^2-e^2 x^2\right )^{7/2}} \, dx}{9009 d^{12} e^4}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {273 d-640 e x}{1365 d^7 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {\int \frac {45045 d^{10} e^6-84480 d^9 e^7 x}{x \left (d^2-e^2 x^2\right )^{5/2}} \, dx}{45045 d^{16} e^6}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {273 d-640 e x}{1365 d^7 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {273 d-512 e x}{819 d^9 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {135135 d^{12} e^8-168960 d^{11} e^9 x}{x \left (d^2-e^2 x^2\right )^{3/2}} \, dx}{135135 d^{20} e^8}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {273 d-640 e x}{1365 d^7 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {273 d-512 e x}{819 d^9 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {819 d-1024 e x}{819 d^{11} \sqrt {d^2-e^2 x^2}}+\frac {\int \frac {135135 d^{14} e^{10}}{x \sqrt {d^2-e^2 x^2}} \, dx}{135135 d^{24} e^{10}}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {273 d-640 e x}{1365 d^7 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {273 d-512 e x}{819 d^9 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {819 d-1024 e x}{819 d^{11} \sqrt {d^2-e^2 x^2}}+\frac {\int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx}{d^{10}}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {273 d-640 e x}{1365 d^7 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {273 d-512 e x}{819 d^9 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {819 d-1024 e x}{819 d^{11} \sqrt {d^2-e^2 x^2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )}{2 d^{10}}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {273 d-640 e x}{1365 d^7 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {273 d-512 e x}{819 d^9 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {819 d-1024 e x}{819 d^{11} \sqrt {d^2-e^2 x^2}}-\frac {\operatorname {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right )}{d^{10} e^2}\\ &=\frac {8 d (d-e x)}{13 \left (d^2-e^2 x^2\right )^{13/2}}-\frac {4 e x}{13 d \left (d^2-e^2 x^2\right )^{11/2}}+\frac {13 d-40 e x}{117 d^3 \left (d^2-e^2 x^2\right )^{9/2}}+\frac {117 d-320 e x}{819 d^5 \left (d^2-e^2 x^2\right )^{7/2}}+\frac {273 d-640 e x}{1365 d^7 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {273 d-512 e x}{819 d^9 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {819 d-1024 e x}{819 d^{11} \sqrt {d^2-e^2 x^2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d^{11}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 161, normalized size = 0.69 \[ \frac {-4095 \log \left (\sqrt {d^2-e^2 x^2}+d\right )+\frac {\sqrt {d^2-e^2 x^2} \left (9839 d^9+22976 d^8 e x-4466 d^7 e^2 x^2-56304 d^6 e^3 x^3-34156 d^5 e^4 x^4+40240 d^4 e^5 x^5+45735 d^3 e^6 x^6-1540 d^2 e^7 x^7-16385 d e^8 x^8-5120 e^9 x^9\right )}{(d-e x)^3 (d+e x)^7}+4095 \log (x)}{4095 d^{11}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(d + e*x)^4*(d^2 - e^2*x^2)^(7/2)),x]

[Out]

((Sqrt[d^2 - e^2*x^2]*(9839*d^9 + 22976*d^8*e*x - 4466*d^7*e^2*x^2 - 56304*d^6*e^3*x^3 - 34156*d^5*e^4*x^4 + 4
0240*d^4*e^5*x^5 + 45735*d^3*e^6*x^6 - 1540*d^2*e^7*x^7 - 16385*d*e^8*x^8 - 5120*e^9*x^9))/((d - e*x)^3*(d + e
*x)^7) + 4095*Log[x] - 4095*Log[d + Sqrt[d^2 - e^2*x^2]])/(4095*d^11)

________________________________________________________________________________________

fricas [B]  time = 2.40, size = 432, normalized size = 1.85 \[ \frac {9839 \, e^{10} x^{10} + 39356 \, d e^{9} x^{9} + 29517 \, d^{2} e^{8} x^{8} - 78712 \, d^{3} e^{7} x^{7} - 137746 \, d^{4} e^{6} x^{6} + 137746 \, d^{6} e^{4} x^{4} + 78712 \, d^{7} e^{3} x^{3} - 29517 \, d^{8} e^{2} x^{2} - 39356 \, d^{9} e x - 9839 \, d^{10} + 4095 \, {\left (e^{10} x^{10} + 4 \, d e^{9} x^{9} + 3 \, d^{2} e^{8} x^{8} - 8 \, d^{3} e^{7} x^{7} - 14 \, d^{4} e^{6} x^{6} + 14 \, d^{6} e^{4} x^{4} + 8 \, d^{7} e^{3} x^{3} - 3 \, d^{8} e^{2} x^{2} - 4 \, d^{9} e x - d^{10}\right )} \log \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{x}\right ) + {\left (5120 \, e^{9} x^{9} + 16385 \, d e^{8} x^{8} + 1540 \, d^{2} e^{7} x^{7} - 45735 \, d^{3} e^{6} x^{6} - 40240 \, d^{4} e^{5} x^{5} + 34156 \, d^{5} e^{4} x^{4} + 56304 \, d^{6} e^{3} x^{3} + 4466 \, d^{7} e^{2} x^{2} - 22976 \, d^{8} e x - 9839 \, d^{9}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{4095 \, {\left (d^{11} e^{10} x^{10} + 4 \, d^{12} e^{9} x^{9} + 3 \, d^{13} e^{8} x^{8} - 8 \, d^{14} e^{7} x^{7} - 14 \, d^{15} e^{6} x^{6} + 14 \, d^{17} e^{4} x^{4} + 8 \, d^{18} e^{3} x^{3} - 3 \, d^{19} e^{2} x^{2} - 4 \, d^{20} e x - d^{21}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)^4/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

1/4095*(9839*e^10*x^10 + 39356*d*e^9*x^9 + 29517*d^2*e^8*x^8 - 78712*d^3*e^7*x^7 - 137746*d^4*e^6*x^6 + 137746
*d^6*e^4*x^4 + 78712*d^7*e^3*x^3 - 29517*d^8*e^2*x^2 - 39356*d^9*e*x - 9839*d^10 + 4095*(e^10*x^10 + 4*d*e^9*x
^9 + 3*d^2*e^8*x^8 - 8*d^3*e^7*x^7 - 14*d^4*e^6*x^6 + 14*d^6*e^4*x^4 + 8*d^7*e^3*x^3 - 3*d^8*e^2*x^2 - 4*d^9*e
*x - d^10)*log(-(d - sqrt(-e^2*x^2 + d^2))/x) + (5120*e^9*x^9 + 16385*d*e^8*x^8 + 1540*d^2*e^7*x^7 - 45735*d^3
*e^6*x^6 - 40240*d^4*e^5*x^5 + 34156*d^5*e^4*x^4 + 56304*d^6*e^3*x^3 + 4466*d^7*e^2*x^2 - 22976*d^8*e*x - 9839
*d^9)*sqrt(-e^2*x^2 + d^2))/(d^11*e^10*x^10 + 4*d^12*e^9*x^9 + 3*d^13*e^8*x^8 - 8*d^14*e^7*x^7 - 14*d^15*e^6*x
^6 + 14*d^17*e^4*x^4 + 8*d^18*e^3*x^3 - 3*d^19*e^2*x^2 - 4*d^20*e*x - d^21)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)^4/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to transpose Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.03, size = 385, normalized size = 1.65 \[ -\frac {128 e x}{273 \left (2 \left (x +\frac {d}{e}\right ) d e -\left (x +\frac {d}{e}\right )^{2} e^{2}\right )^{\frac {5}{2}} d^{7}}+\frac {1}{13 \left (x +\frac {d}{e}\right )^{4} \left (2 \left (x +\frac {d}{e}\right ) d e -\left (x +\frac {d}{e}\right )^{2} e^{2}\right )^{\frac {5}{2}} d^{2} e^{4}}+\frac {2}{13 \left (x +\frac {d}{e}\right )^{3} \left (2 \left (x +\frac {d}{e}\right ) d e -\left (x +\frac {d}{e}\right )^{2} e^{2}\right )^{\frac {5}{2}} d^{3} e^{3}}+\frac {29}{117 \left (x +\frac {d}{e}\right )^{2} \left (2 \left (x +\frac {d}{e}\right ) d e -\left (x +\frac {d}{e}\right )^{2} e^{2}\right )^{\frac {5}{2}} d^{4} e^{2}}+\frac {320}{819 \left (x +\frac {d}{e}\right ) \left (2 \left (x +\frac {d}{e}\right ) d e -\left (x +\frac {d}{e}\right )^{2} e^{2}\right )^{\frac {5}{2}} d^{5} e}+\frac {1}{5 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}} d^{6}}-\frac {512 e x}{819 \left (2 \left (x +\frac {d}{e}\right ) d e -\left (x +\frac {d}{e}\right )^{2} e^{2}\right )^{\frac {3}{2}} d^{9}}+\frac {1}{3 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}} d^{8}}-\frac {\ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}\, d^{10}}-\frac {1024 e x}{819 \sqrt {2 \left (x +\frac {d}{e}\right ) d e -\left (x +\frac {d}{e}\right )^{2} e^{2}}\, d^{11}}+\frac {1}{\sqrt {-e^{2} x^{2}+d^{2}}\, d^{10}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(e*x+d)^4/(-e^2*x^2+d^2)^(7/2),x)

[Out]

1/13/d^2/e^4/(x+d/e)^4/(2*(x+d/e)*d*e-(x+d/e)^2*e^2)^(5/2)+2/13/d^3/e^3/(x+d/e)^3/(2*(x+d/e)*d*e-(x+d/e)^2*e^2
)^(5/2)+29/117/d^4/e^2/(x+d/e)^2/(2*(x+d/e)*d*e-(x+d/e)^2*e^2)^(5/2)+320/819/d^5/e/(x+d/e)/(2*(x+d/e)*d*e-(x+d
/e)^2*e^2)^(5/2)-128/273/d^7*e/(2*(x+d/e)*d*e-(x+d/e)^2*e^2)^(5/2)*x-512/819/d^9*e/(2*(x+d/e)*d*e-(x+d/e)^2*e^
2)^(3/2)*x-1024/819/d^11*e/(2*(x+d/e)*d*e-(x+d/e)^2*e^2)^(1/2)*x+1/5/d^6/(-e^2*x^2+d^2)^(5/2)+1/3/d^8/(-e^2*x^
2+d^2)^(3/2)+1/d^10/(-e^2*x^2+d^2)^(1/2)-1/d^10/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {7}{2}} {\left (e x + d\right )}^{4} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)^4/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

integrate(1/((-e^2*x^2 + d^2)^(7/2)*(e*x + d)^4*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{x\,{\left (d^2-e^2\,x^2\right )}^{7/2}\,{\left (d+e\,x\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(d^2 - e^2*x^2)^(7/2)*(d + e*x)^4),x)

[Out]

int(1/(x*(d^2 - e^2*x^2)^(7/2)*(d + e*x)^4), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {7}{2}} \left (d + e x\right )^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)**4/(-e**2*x**2+d**2)**(7/2),x)

[Out]

Integral(1/(x*(-(-d + e*x)*(d + e*x))**(7/2)*(d + e*x)**4), x)

________________________________________________________________________________________